If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24n^2+29n-63=0
a = 24; b = 29; c = -63;
Δ = b2-4ac
Δ = 292-4·24·(-63)
Δ = 6889
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6889}=83$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-83}{2*24}=\frac{-112}{48} =-2+1/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+83}{2*24}=\frac{54}{48} =1+1/8 $
| 4x+17=-2x+20 | | 12x-5x-9=4x+12 | | 2x-16+3x=14 | | 6.46+4x=25.98 | | 7(y-8)+24=-3(y+6) | | 27=-8+5n | | –8q=–10q−6 | | (3+y)(3y+7)=0 | | –5z−7=–3z+9 | | 4x^2+2x=6x+8 | | 2.5x2.5x2.5=x | | s+2.43=2.09 | | 3x+4x+3x=70 | | 2v−3=–1 | | y3− –9=13 | | –5=2(h+–1)+1 | | 11h-(2h-1)=113 | | (3+5i)+(4-3i)=0 | | 42+9b=42 | | 7i+2(6i+9)=170 | | 6i-2(7i+14)=12 | | 3=v+22/9 | | k/5+35=38 | | 4^(2x+1)−65(4^x)+16=0 | | 44=4(j+2) | | 96=n/7+88 | | 18=3+3g | | 5(f−86)=55 | | -2i+4+4i-1=15 | | 2x^2+16x-7680=0 | | 8+i/5=12 | | j+137=3 |